Direct type-specific conic fitting and eigenvalue bias correction

نویسندگان

  • Matthew Harker
  • Paul O'Leary
  • Paul J. Zsombor-Murray
چکیده

A new method to fit specific types of conics to scattered data points is introduced. Direct, specific fitting of ellipses and hyperbolae is achieved by imposing a quadratic constraint on the conic coefficients, whereby an improved partitioning of the design matrix is devised so as to improve computational efficiency and numerical stability by eliminating redundant aspects of the fitting procedure. Fitting of parabolas is achieved by determining an orthogonal basis vector set in the Grassmannian space of the quadratic terms’ coefficients. The linear combination of the basis vectors that fulfills the parabolic condition and has a minimum residual norm is determined using Lagrange multipliers. This is the first known direct solution for parabola specific fitting. Furthermore, the inherent bias of a linear conic fit is addressed. We propose a linear method of correcting this bias, producing better geometric fits which are still constrained to specific conic type. 2007 Published by Elsevier B.V.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Least Squares Problems with Absolute Quadratic Constraints

This paper analyzes linear least squares problems with absolute quadratic constraints. We develop a generalized theory following Bookstein’s conic-fitting and Fitzgibbon’s direct ellipse-specific fitting. Under simple preconditions, it can be shown that a minimum always exists and can be determined by a generalized eigenvalue problem. This problem is numerically reduced to an eigenvalue problem...

متن کامل

A Novel Approach to Orthogonal Distance Least Squares Fitting of General Conics

Fitting of conics to a set of points is a well researched area and is used in many fields of science and engineering. Least squares methods are one of the most popular techniques available for conic fitting and among these, orthogonal distance fitting has been acknowledged as the ’best’ least squares method. Although the accuracy of orthogonal distance fitting is unarguably superior, the proble...

متن کامل

A Bayesian approach to type-specific conic fitting

A perturbative approach is used to quantify the effect of noise in data points on fitted parameters in a general homogeneous linear model, and the results applied to the case of conic sections. There is an optimal choice of normalisation that minimises bias, and iteration with the correct reweighting significantly improves statistical reliability. By conditioning on an appropriate prior, an unb...

متن کامل

Direct and Specific Fitting of Conics to Scattered Data

A new method to fit specific types of conics to scattered data points is introduced. Direct, specific fitting of ellipses and hyperbolæ is achieved by imposing a quadratic constraint on the conic coefficients, whereby an improved partitioning of the design matrix is devised so as to improve computational efficiency and numerical stability by eliminating redundant aspects of the fitting procedur...

متن کامل

Nonlinearly Structured Low-Rank Approximation

Polynomially structured low-rank approximation problems occur in • algebraic curve fitting, e.g., conic section fitting, • subspace clustering (generalized principal component analysis), and • nonlinear and parameter-varying system identification. The maximum likelihood estimation principle applied to these nonlinear models leads to nonconvex optimization problems and yields inconsistent estima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Image Vision Comput.

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2008